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ABSTRACT 

We comple te  the  classification of the  Lie cen t re -by-metabe l ian  group 

algebras  over a rb i t ra ry  fields by solving the  case of character is t ic  2. 

The classification of the Lie centre-by-metabelian group algebras in characteris- 

tic p was started by Sharma and Srivastava in [12], and continued by Kfilshammer 

and Sharma in [4], and by Sahai and Srivastava in [10]. A. Bovdi remarked in his 

survey article [1] that the case p = 2 was yet to be resolved. The present paper 

is the second of two (cf. [9]) devoted to this task, with the following result: 

THEOREM: Let G be a group, and let F be a field of characteristic 2. Then 

FG is Lie centre-by-metabelian, if  and only if  one of the following conditions is 

satisfied: 

(i) IG'[ divides 4. 

(ii) G r is central and elementary abelian of order 8. 

(iii) G acts by element inversion on G' ~ Z2 x Z4, and Ca(G')' C ~b(G'). 

(iv) G contains an abelian subgroup A of index 2. 

The following observation sheds some light on condition (iv): 

LEMMA 0.2: If  a group G has an abelian subgroup A of index 2, then G acts 

on G' by element inversion. In particular, Ca(G') E {G, A}, and 

exp(G') < 2 ~ : ~  cl(G) <_ 2 ~ CG(G') = G ~ CG(G') 7 ~ A. 
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Proof: Let g C G, a C A. Then G' = (g,A), g 2 C A, and 1 = (g2,a) = 

g(g,a)(g,a). | 

In [9], we already established the "if '-direction of Theorem 1. The proof of the 

"only-if"-direction falls into two parts: The first step is to show it for nilpotent 

groups of class 2, and for groups whose commutator subgroups have exponent 2 

(which turns out to be the same here). This has been done in [9]. The objective of 

the present paper is the second step, namely to prove the "only-if"-direction for 

groups that  act nontrivially on their commutator subgroups. In many cases, we 

will have to show that this action is in fact element inversion. So in section 1, we 

first prove two general lemmata which already yield some preliminary restrictions 

on how G may act on G I, if FG is Lie centre-by-metabelian. We then describe 

an algorithm that computes all actions that comply with these restrictions in 

the case IG'I c {8, 16}. Since it turns out that there are only few of these, we 

examine them one by one in sections 2 and 3. Thus prepared, we finally extend 

the proof of Theorem 1 to arbitrary groups in section 4. 

The notation used in the text is standard (see also [9]); the base field always 

is denoted by F, and always has characteristic 2. 

1. Group actions and algorithmic reductions 

LEMMA 1.1: Let P be a normal finite 2-subgroup of a group G, such that 

G/CG(P) is not a 2-group. I fFG is Lie centre-by-metabelian, then 

(i) there is a Hall 2'-subgroup S/Ca(P) of G/CG(P) of order 3, 

(ii) P = Cp(S) • (S,P) is abelian with (S ,P)  ~ V4. 

Proof: Set C := Ca(P). Since P is finite, G/C is finite. By [7], G is solv- 

able. Therefore G/C contains a (nontrivial) Hall 2'-subgroup SIC [3, Hauptsatz 

VI.1.8]. 

By Burnside [2, theorem 5.1.4], the action of S /C  on the elementary abelian 

group 15 := p / o ( g )  is nontrivial and faithful. With G := G/~(P) ,  S := 

S ~ ( P ) / ~ ( P ) ,  C := CO(P)/O(P),  also S / C  ~ S /C  acts nontrivially and faith- 

fully on/5.  

Applying [9, lemma 3.1] to G yields IS : CI = 3, t5 = (S,/5) x Cp(S), and 

I(S,/5)1 = 4. In particular, IS: C I = 3; this shows (i). We write SIC = (aC). 

To prove (ii), we first study the case P = (S, P).  We claim that  then P = 

V4. First note that  /5 = p / ~ ( p )  = (S ,P) /~ (P)  = (S ,P/O(P))  = (S,P) has 

order 4. Hence we may write P/O(P) = (x~(P),yO(P))  with some elements 
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x ,y  E P,  where ax = y .  Then P =  (x,y), a n d x  2 - = y 2 -  ( x , y ) -  1, Oy_= xy 

(mod ~(P) ) .  Then 

p :=Ix + ax, a + Xa] = Ix + y,a + xy-la] = [(1 + xy-1)y,  (1 + xy-1)a] 

=(1 + xy 1)(y(1 + xy -1 )a+ a(1 + x y - 1 ) y )  

=(1 + xy-1)(y  ~- YX -t- ay + y)a = ( Yx + ~g + x2y -1 + x y  - 1  a~J)a, 

and 

0 = [ x ,  p]a -1  

=x(  Yx + ay + x2y-1 + xy-1 ay)aa-1 + ( Yx + ay + x2y-1 + xy-1 ~g)axa-1 

a 3 - 1  = x Y x + x  y + x  y + x 2 y - l ~ y + y x +  ~ y y + x 2 + x y - l a y y E F P .  

Splitting the last sum w.r.t, the partition of P into cosets of ~(P) ,  we obtain 

O = x ~ x + x  2 e FIe(P)] ,  0 = x 2 y - l ~ y +  ~yyEF[x~(P)],  
0 = x + x y  -1  e 0 = x3y  -1  + y x  e 

The first equation implies that Yx = x, i.e. P = (x, Y/ is abelian. The last one 

shows that  x 2 = y2. Hence ~P(P) = (x2,y 2) is cyclic. 

Assume that  O(P) ~ 1. Then IO(P):  O(OP)l = 2. Since O( r  _~ G, we 

may replace G by G/O(OF) if necessary, and assume that IO(P)I = 2. Then 

[PI -- 8, i.e. P ~ Z2 • Z4. Then P contains four elements of order 4, and 

each automorphism that fixes one of them also fixes its inverse. Hence P has no 

automorphism of order 3, contradiction. Therefore O(P) = 1, and thus P ~ V4, 

as desired. 

We now consider the case that M := (S,P) < P. By [5, 7.12], we have 

P = MQ, where Q := Cp(S), and (S, M) = (S, S, P)  = (S, P)  = M. Therefore 

we are in a similar situation as in the preceding case (with M instead of P,  and 

S M  instead of G). Applying its result, we obtain M ~ V4. Since S acts on 

M by cyclic permutation of the three nontrivial elements, we have Q n M =  1. 

Thus P = M >4 Q, and so (M,Q) E M A P '  C_ MN(I) (P) .  But M ~ V4 

M ~ ( P ) / ~ ( P )  ~ M / M  n (P(P), i.e. U n (I)(P) = 1. Consequently ( i ,  Q) = 1, 

and P = M • Q. 

It remains to show that  Q is abelian. We assume that Q~ ~ 1 and set U := 

(a, P}. Then U ~ = (a, P)P~ = (a, M)Q ~ = M • Q'. Since P is a finite 2-group, 

there exists a normal subgroup R of P with R C_ Q~ and IQ':  RI = 2 by [3, 

Satz III.7.2]. Since R C_ Q is centralized by a, it is even normal in U. Then 

U / R  is a not nilpotent, and (U/R) ~ ~ M • Q ' /R  ~- Z2 • Z2 • Z2, i.e. U / R  is a 

counterexample to Theorem 1. But Theorem 1 has been proved in [9] for groups 

H with exp(H t) = 2. Contradiction. | 
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LEMMA 1.2: Let G be a group such that IG'] ~8. Suppose that M is a subgroup 

of index 2 in G with ]M' I = 2. Then FG is not Lie centre-by-metabelian. 

Proof: Note tha t  M '  _~ G, hence M' C_ Z(G). We w r i t e M '  = (z) and G = 

(g, M).  Then G' = (g, M)M' .  
We define maps "r: (M \ Z(M))  • M • M --4 FIG'], 

(b, c, d) ~4 (1 + z)(1 + (g, c-1))(1 + (g, d))(1 + (g, b)), 

and ~: M ~ G' /M' ,  a ~ (g,a)M'. Then ~ is surjective; it even is an 

epimorphism since for all a, b �9 M we have ~(ab) = (g, ab)M' = (g, a)a(g, b)M' 
= (g, a)M'(a, g, b)(g, b) = (g, a)(g, b)M' = ~(a)99(b). We are going to show tha t  

~'#0. 
Suppose first tha t  there are elements of G' whose order is not a power of 2. 

Then also G' /M'  contains such elements. Then there clearly is also an element 

b �9 M ".. Z ( M )  such that  I(T(b))l is not a power of 2; in particular, (g,b) 4 ~ (z). 

Then (g, b 2) -- (g,b) 2 (mod (z)), hence 

T(b, b -~, b) = (1 + z)(1 

Suppose now tha t  every 

IG'/M'I > 8. Then there 

+ (g, b2))(1 + (g,b)) 2 = (1 + z)(1 + (g,b) 4) # O. 

element of G' is a 2-element. Then I G'] _> 16, i.e. 

also is a finite (2-)subgroup H / M '  of G'/M'  with 

IH/M'] >_ 8. We obviously may choose elements c,d E M such tha t  1 ~ (~(c)) 
(~(c),~(d)) ,~H/M'.  Then M1 := ~ - l ( (~ (c ) ,~ (d ) ) )  < M. Since also Z ( M )  < 
M, there is an element b E M \  (M1 U Z ( M ) )  ~ O. Hence 1 < (~(c)) < 

(~(c), T(d)) < (~(c), ~(d), ~(b)), i.e. 1 < (z) < (z, (g,c)) < (z, (g,c), (g, d)) < 
(z, (g, c), (g, d), (g, b)). Then T(b, c -1, d) does not vanish, since the summand 1 in 

its direct expansion cannot be cancelled. 

In any ease, there is a triple (b,c,d) E (M \ Z ( M ) )  • M • M such tha t  

v(b,c,d) ~ O. Choose an element a E M ".. CM(b) ~ O, then (a,b) ---- z, and 

(FG)" ~ [b + ab, g + Cg] = [(1 + z)b, (1 + (c, g))g] 

= (1 + z)(1 + (c,g))[b,g] = !1 + z)(1 + (c,g))(1 + (g, b))bg., 

=:a~FM 

(Note tha t  z is central and (c,g) commutes with b modulo (z).) Now M/(z)  is 

abelian, in particular [d, a] = 0. Then 

0 ~ bT(b,c,d)dg = (1 + z)(1 + (c,g))(1 + (g,b))b(1 + (g,d))dg 

= a[d, g] = [d, ag] �9 [FG, (FG)"]. I 
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Remark 1.3: Assume that G is a counterexample to Theorem 1, and that IGII E 

{8, 16}. Set H := G', C := CG(H), A := G/C, I := H/(CNH) = H/Z(H). Note 

that  A and I may be embedded into Aut(H),  using the group monomorphisms 

defined by the actions of A, resp. I, on H, where the image of I in Aut(H) is 

Inn(H).  The canonical isomorphism A' = HC/C --+ I is compatible with these 

monomorphisms, hence A' is mapped onto Inn(H) as well. 

Now H is not elementary abelian, and A r 1. (Recall that those are among 

t h e  cases already discussed in [9], since A = 1 ~ cl(G) <_ 2.) Furthermore, 

FG is Lie eentre-by-metabelian, so Lemma 1.1 implies that: 

(1) If H is nonabelian, then A is a 2-group. 

(2) If H is abelian and A is not a 2-group, then A is a {2, 3}-group such that 

ISI = 3 and (S, H) ~ V4 for any Sylow 3-subgroup S of A. 

If IHI = 16, we may argue by induction and assume that there are no counterex- 

amples with commutator  subgroups of order 8. So for all N ~_ G with N C_ H 

and IN I = 2, GIN is not a counterexample. Hence one of the following holds: 

(3) H/N ~- Z2 • Z2 • Z2, and A acts trivially on H/N, i.e. (A, H) C_ N. 

(4) H/N ~ Z2 x Z4, and A acts by element inversion on H/N. 

(5) GIN contains an abelian subgroup of index 2. 

But Lemma 1.2 shows that in case (5), G also contains an abelian subgroup of 

index 2, hence it is not a counterexample. So we may dismiss this case. 

We are now able to describe an algorithm that, given the isomorphism type of 

H,  computes all possibilities for A (as a subgroup of Aut(H) up to conjugacy): 

�9 Check if H is elementary abelian. If so, stop, otherwise proceed. 

�9 Compute (the conjugacy classes of) the subgroups of Aut(H).  

�9 Throw away the trivial subgroup. 

�9 Throw away all subgroups A with A' r Inn(H).  

�9 ThrOw away the subgroups A that do not comply with either (1) or (2). 

�9 If IHI = 16, let A loop over all subgroups that have survived so far. Com- 

pute all A-invariant subgroups N of H of order 2. If at least one of these 

N satisfies neither (3) nor (4), delete A from the list. 

A computer program implementing this algorithm is described in [8, appendix 

C]. It is designed for the computer algebra system GAP [11], and may be down- 

loaded from the authors web pages (filename actions.g). The following is a list of 
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all groups H of orders 8 and 16, along with the results of the above algorithm: 

catalogue H Aut(H) # of subgroups A 

1 

2 

3 
4 

5 

6 

7 

8 

9 
10 

11 
12 
13 
14 
15 

16 
17 

18 
19 

~ x ~  
D8 
qs 
~ x ~ x ~  
Z16 

Z4xZ4 
fiB) 
(16) 
Z2xZs 
(16) 

Di6 
Quasi-Dip 

Q16 
Y4xZ4 
Z2 x D s  

Z2 x Qs 

Z4YD8 
Z2 x Z2 x Z2 x Z2 

�88 
Ds 
Ds 

$4 
GL(3,2) 

Z2xZ4 
(96) 
(32) 

(32) 

Z2 x D 8  

Z z x D s  
(32) 

Z2 xDs 
(32) 
(192) 

(64) 
(192) 

Z 2 •  
GL(4,2) 

The first column indexes H as it appears in GAP's 2-group catalogue [6], the next 

two columns give the names for H and Aut(H) (resp. their orders in case they 

do not have a proper name), and the last column gives the number of (conjugacy 

classes of) subgroups A the algorithm has computed. 

2. C o m m u t a t o r  s u b g r o u p s  o f  o r d e r  8 

In this section, we are going to verify Theorem 1 for all groups G with JG'J = 8. 

For this, it suffices to examine the 4 + 6 = 10 cases listed in the upper half of the 

table in 1:3. In particular, we may assume that G' ~ Z8 or G' ~ Z2 • Z4. 

Remark 2.1: Let G be a group with G' = (x) =~ Zs. Then Aut(G')  = (a,/~) =~ 

V4, where a: x ~ x -1, ~/: x ~+ x 3. II 

The four possibilities for the action of G on G' mentioned in the table in 1.3 

are (a, ~), (a), (~), (a~), i.e. all nontrivial subgroups of i u t ( G ' ) .  

As usual, we set C := CG(G~), and study the monomorphism ~v: G / C  L+ 

Aut(G t) that  stems from the action of G on G p. We are going to show that  if FG 
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is Lie centre-by-metabel ian,  then the image of ~ is (a}, and C is abelian (i.e. G 

satisfies condit ion (iv) of Theorem 1). This will be done in Lemmata  2.2-2.4. 

LEMMA 2.2: Let the notation be as in 2.1, and assume that the image of 9z is 
either (/3} or (a3}. Then FG is not Lie centre-by-metabelian. 

Proof'. Observe tha t  a/3: G ~ -~ G',  x ~-~ x 5. Hence, there is an exponent  

i E {3,5} and an element b C G such tha t  bx = x ~. Then  G/C = (bC}, and 

G' = (b, C)C' = (b, C), since C' C_ Z(G) A G' < G', i.e. C '  c_ (I)(G'). 

Consequently,  (b, .): C --~ G ~ = Ix) is an epimorphism, so there is an element 

c E C such tha t  (b, c) = x. Then  

7- :=[[b, c], [b, cb-1]] = [(1 + x)cb, (1 + x)c] = (1 + x)c (b(1 + x)c + (1 + x)cb) 

=(1 + x)c ((1 + xi)x + (1 + x)) cb = (1 + x)(1 + xi+l)c2b, 

and 

It is easy to see tha t  this is nonzero for any choice of i E {3, 5}. 

[c, ~-] = (1 + x)(1 + xi+l)c2[c,  b] -- (1 § x)(X § Xi+I)C2(1 + x)cb 

= (1 + x +1)(1 + x )c3b. 

| 

LEMMA 2.3: Let the notation be as in 2.1, and assume that the image of  ~ is 

(a, ~}. Then FG is not Lie centre-by-metabelian. 

Proof: C h o o s e a ,  b E  G w i t h  a x = x  -1, b x = x  3. Then  a b x = x  5, a n d G / C =  

<he, bC> = (abC, bC>. From C'  C Z(G)  N G' = Cg,(a) A CG,(b) = (x 4} C ~(G'), 

it follows tha t  G' = ((ab, b)> (ab, C)(b,C)C' = ((a,b)) (ab, C)(b,C). Since G '  is 

cyclic, we have G'  = ((a, b)} or G'  = (ab, C) or G'  = (b, C), 

Suppose tha t  G' -- (b, C), and set H := (b, C). Then  H' = G', and GH(H') = 
C, and H / C  = (bC}. Hence H satisfies the hypothesis of Lemma 2.2, i.e. ]FH is 

not Lie centre-by-metabel ian,  and certainly FG is neither. The  same argument  

is valid for the case G ~ = (ab, C). 
Therefore  we may assume tha t  (a, b) has order  8, w.l.o.g. (a, b) = x. Then  

:=[a + ha, b + = [(1 + x- l )a ,  (1 + x)b] 

=(1 + x - i ) ( 1  + x- i )ab  + (1 + x)(1 + x-3)ba 

-- ((1 + x -2)  + (1 + x)(1 + x - a ) x  -1)  ab = x 4 (1 + x + x 2 + x 3) ab, 

and [x, 7] = x4(l +x +x2 § ab] = x4(l +x§ +xa)(l +x4)xab = (x} + ab ~ O. 

Hence FG is also not  Lie centre-by-metabel ian in this case. | 
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LEMMA 2.4: Let the notation be as in 2.1, and assume that the image of ~ is 

(a). I fFG is Lie centre-by-metabelian, then C is abelian. 

Proof." Suppose that C' # 1. Since C' c_ Z(G) (3 G' = (3; 4) ~ Z2, we have 
c ' =  (x4) c r 

Let a E G \ C .  Then G / C  = (aC), ax = X -~, g '  = (a,C), and the map 

(a,.): C -4 G' is an epimorphism. In particular, U := (a, .)-1((x2}) < C. Let 

d E C \ Z(C)  ~ ~, then V := Cc(d) < C. Therefore we may choose an element 

c e C \ (U U V) ~ ~. Then (c, d) = x 4 = (d, c), and (a, c) has order 8, w.l.o.g. 

(a, c) = x. Hence 

(Fc)" [a + Ca, c + de1 : I,(1 +_x-l!a, (l+kL cl 
ECFa(c) ~Z(FG) 

---- (1 + x-I)(1 + x4)[a,c] = (1 + x-1)(1 + X4)(1 -[- x - 1 ) a c  = (x2)+ac, 

and [c, (x2)+ac] = (x2)+[c, alc= (x2) + (1 +x)cac= (x) +cac r 0. Therefore, FG 

is not Lie centre-by-metabelian. | 

Remark 2.5: Let us now turn to the case G' = (x, y) ~ Z2 x Z4, where x 2 = 

1 = y4. Then Aut(G') = (a, fl) ~ De, where 

o~: x ~-~ xy 2, y ~-~ xy, 13: x ~-+ x, y ~+ xy; 

check that 132 = ida, = a 4, ~ a ~  -1  : a -1 .  Set C := CG(G') and let ~: G / C  ~-> 

Aut(G') be the usual monomorphism. The algorithm in 1.3 leaves us with six 

(conjugacy classes of) "possible" images of T. Since G / C  is abelian, those are 
the (conjugacy classes of) the subgroups of order 2 or 4, namely (a  2,/3), (a), 
(OZ2,O~/~), (/3) ,x, (OL2fl), (OL2>, (O~3~) ~ (Cg/~) (here ,~ symbolizes conjugacy of 
subgroups). 

We will show in Lemmata 2.6-2.11 that if FG is Lie centre-by-metabelian, then 

G / C  is mapped o n t o  (a2), and that C' C (I)(G') = (y2). (Note that (a  2) acts 

by element inversion on G', i.e. G then satisfies condition (iii) of Theorem 1.) 

LEMMA 2.6: Let the notation be as in 2.5, and assume that the image of ~ is 

(a). Then FG is not Lie centre-by-metabeliaJ1. 

Proof.- Let a E  G s u c h t h a t  ah=c~(h) for a l l h E  G ~,i.e. ax-=xy  2, Oy = x y .  

Then G / C  = (aC) ~ Z4. Since C' C_ Z(G) D G' = (y2) = (I)(G'), we have 

G! = (a,C)C'  = (a,C). Hence (a,.): C -4 G ~ is an epimorphism. Choose an 
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element c E C with (a, c) = y. Note tha t  (a, x) = y2 = (x, a) E Z(G).  Then 

(FG)" ~ [c + ac, a + ~a] = [(1 + y)c, (1 + y2)a] 

and [c, (x, y2 }+ca] 

Therefore, FG is not Lie centre-by-metabelian. 

= ( l + y 2 ) ( ( l + y ) c a + a ( l + y ) c )  

= ( l + y 2 ) ( ( l + y ) c a + ( l + x y ) y c a )  

= ( l + y 2 ) ( l + x y 2 ) c a  = (x, y2}+ca, 

= (x, y2)+c[c,a] = c(x, y2)+(1 +y)ca  = c(G')+ca 7s O. 

I 

LEMMA 2.7: Let the notation be as in 2.5, and assume that the image of 9~ is 
(j3} or (a2/3}. Then FG is not Lie centre-by-metabelian. 

Proof: Since (j3} and (a2~} are conjugate in Aut(G') ,  we may (by renaming 

the elements of G ~ if necessary) w.l.o.g, assume tha t  the image of ~ is (/3). Then 

there is an element b E G with bx = /3(x) = x and by = ~(y) = xy. Then 

G / C  = (bC} ~ Z2 and C'  C_ Z(G) M G' = (x, y2} = fl(G') ~ V4. 

Now G I = (b, C ) C ,  so there is an element c E C such tha t  ~) := (b, c) has 

order 4, i.e. ~ E {y, xy, y - l , x y - 1 } .  In any case, b~ = xt). So we may w.l.o.g. 

assume tha t  ~) = y. Then 

(FG)" ~ [c + be, b + Ub] = [(1 + y)c, (1 + x)b] = (1 + x)((1 + y)cb + b(1 + y)c) 

= (1 + x)((1 + y)cb + (1 + xy)ycb) = (1 + x)(1 + xy2)cb = (x, y2)+cb, 

and [c,(x, y2}+cb] -- (x, y2}+c[c,b] = c{x, y2}+(1 + y)cb -- c(G')+cb 7 k O. 
Therefore, FG is not Lie centre-by-metabelian. I 

LEMMA 2.8: Let the notation be as in 2.5, and assume that the image of  ~ is 
(a3fl} or (a~}. Then FG is not Lie centre-by-metabelian. 

Proof: As in the preceding proof, we may w.l.o.g, assume tha t  the image of 
is (a3~) ,  and choose an element b E G with bx = (a3~)(x) = xy 2 and by = 

(a3/3)(y) = y. Then G / C  = (be) ~- Z 2 and C'  C Z(G)  M G' = (y) ~ Z4. 

CASE 1: C'  = (y}. Here there are elements c,~ E C such tha t  ]((c,~)}[ = 4; in 

particular, (c, .): C -+ (y) is an epimorphism. Then U :-- (c, .)-1((y2}) < C. 

Now G' = (b,C)C' implies tha t  (b,C) ~ (y). Since the map (b, .): C --+ G' is a 

homomorphism, this shows tha t  V := (b, . ) - l ( (y) )  < C. 

Therefore we may choose an element d E C \ (U U V) r 0. Then (c, d) E 

{y ,y -1} ,  and (b,d) E x (y}. By replacing d by its inverse if necessary, we may  
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assume tha t  (c,d) = y. Since for all i E Z, we have (cib, d) = (c,d)i(b,d) = 
y~(b,d), we may replace b by c~b for a suitable i, and assume tha t  (b,d) -- x. 
Note tha t  this does not change the action of b on G I. Then  (cb, d) = xy, hence 

(FG) I' ~ [d + oDd, c + dc] = [(1 + xy)d, (1 + y-1)c] = (1 + xy)(1 + y-1)(dc + cd) 

= (1 + xy)(1 + y - l ) ( 1  + y-1)cd = (1 + xy)(1 + y2)cd = (xy}+cd, 

and [c, (xy}+ cd] = (xy)+ c[c, d] = c(xy)+(1 + y)cd = c(G')+ cd r O. Therefore,  

FG is not  Lie centre-by-metabel ian in this case. 

CASE 2: C '  C (y2} = ~ (G ' ) .  Then  G'  = (b,C),  i.e. the map (b, .): C --+ G'  is 

an epimorphism. If we choose elements c, d C C such that  (b, c) = x = (c, b), 

(b, d) = y, then  

(FG)"  ~ [c + ~c, b + ~b] = [(1 + x)c, (1 + x)b] = (1 + x)((1 + x)cb + b(1 + x)c) 

= (1 + x ) ( 1  + x +  (1 +xy2)x)cb = (1 + x ) ( 1  +y2)cb= (x, y2}+cb. 

Since (cb, d) = (c,d)(b,d) E y (y2}, we then have 

[d, (x, y2}+cb] = (x, y2}+[d, cb] = (x, y2}+(1 + (cb, d))dcb = (G')+ dcb r O. 

Therefore,  FG is also not Lie centre-by-metabel ian in this case. | 

LEMMA 2.9: Let the notation be as in 2.5, and assume that the image of ~ is 
(a 2, ~). Then FG is not Lie centre-by-metabelian. 

Proof: We may choose elements a,b E G with ~h = a2(h) = h -1 for all 

h E G',  and bx = ~(x) = x, by = ~(y) = xy. Then  G / C  = (aC, bC} = 
(abC, bC) ~ V4 and C' C Z ( G ) A  G' = ( x , y  2) = f~(G') ~ 1/4. Moreover, 

G'  = ((a, b)) (ab, C)(b, C)C' = ((a, b)) (ab, C)(b, C)ft(G'). 

CASE 1: ((a,b)) ~ f t (G') .  With  9 := (a,b) we have G'  = (~,x}, ~ = t) -1,  

b~ = xg, so by replacing y by ~), we may assume tha t  (a, b) = y. T hen  

(]FG)" ~ [b + %, a + ba] = [(1 + y)b, (1 + y-1)a] 

= (1 + y)(1 + xy-1)ba + (1 + y - l ) ( 1  + y - 1 ) a b  

: ((1 n k y n I- x y  -1  -~- X) ~- (1 J7 y2)y) ba = (1 + x)(1 + y-t)ba =: T. 

Since (ba, y) = xy 2, it follows tha t  

[y,T] = (1 T X ) ( 1  -t- y - 1 ) [ y ,  ba] = (1 -t- x)(1 -t- y - l ) ( 1  -b x y 2 ) y b a  = (G ' )+ba  7 s O. 

This  shows tha t  FG is not Lie centre-by-metabel ian in this case. 
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CASE 2: ((a,b)> C f t (G') .  Then  

(/3, C) = (b,C) ~ f~(G') or (a2/3, C) = (ab, C) ~ ft(G'). 

Since a/3 = a2/3, we may conjugate bo th  Aut(G' )  and G'  by a if necessary, and 

assume w.l.o.g, tha t  (b, C) = (/3, C) ~ f t (G') .  

Then  there  is an element e �9 C such tha t  ~] := (b, c) �9 yf~(G'). It is easy 

to see tha t  this implies G'  = <x,~)>, and (b,b,c) = (b,~) = x. So if we set 

H := (b, C}, then H '  = G',  CH(H') = C, and H / C  = (bC>. But then H satisfies 

the hypothesis  of Lemma  2.7, so F H  is not Lie centre-by-metabelian,  and nei ther  

is FG. I 

LEMMA 2.10: Let the notation be as in 2.5, and assume that the image of ~ is 
( a  S, a/3} = (a3/3, a/3}. Then FG is not Lie centre-by-metabelian. 

Proof: We may choose elements a ,b  C G with % = (a3/3)(x) = xy 2, Oy = 
(a3/3)(y) = y, and bx = (a/3)(x) = xy 2, by = (a/3)(y) = y3; i.e. a acts trivially 

on (y} and by element inversion on (xy), and b acts by element inversion on (y} 

and trivially on (xy}; note  moreover tha t  abh = h -1 for all h E G I. 

Then  G/C = (aC, bC) --~ V4, and C' C_ Z(G)MG'  = (y2} = ~(G ' )  -~ Z2, hence 

G'  = <(a,b)> (a, C)(b, C). 

CASE 1: (a,C) = G'. If we set H := <a,C>, then H '  = G',  and H / C  is mapped  

onto (c~3/3} under  ~. So H satisfies the hypotheses of Lemma 2.8, hence F H  is 

not Lie centre-by-metabel ian.  

CASE 2: (b, C) = G'.  Here H := <b,C> satisfies the hypotheses of Lemma 2.8, 

since H / C  is mapped  onto (a/3). 

CASE 3: (a,b) • <x,y 2) = ft(G') .  Then  ~(a,b) = (a,b) -1 or b(a,b) = (a,b) -1. 
We only consider the case b(a, b) = (a, b) -1 here, since the case a(a, b) = (a, b) -1 

can be handled completely analogously; we just  have to switch y and xy, resp. a 

and b (this stems again from the fact tha t  a3/3 and a/3 are conjugate in Aut (G ' )  

under  the automorphism/3,  which does switch y and xy). Then  (a, b) E {y, y3} C_ 

Ca(a). By replacing a by a -1 C aC if necessary, we may assume tha t  (a, b) = y. 

Then  (a,C)(b,C) ~: (y>, for otherwise G ' =  <(a ,b ) ) (a ,C) (b ,C)  C_ <y>. 
If (a, c) ~ (y} for some c E C, then 

(FG)"  ~ [b + ~b, ab + b(ab)] = [(1 + y)b, (1 + y-1)ab] 

= (1 + y)(1 + y)bab + (1 + y - l ) ( 1  + y-1)abb 

= (1 + y2)(ba + ab)b = (1 + y2)(1 + y-1)ab2 = (y)+ab 2. 
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Since b 2 C C we have (b 2, c) C C' c_ (y2}. Hence 

[c, (y)+ ab 2] = (y)+(1 + (ab 2, c))cab 2 = (y)+(1 § (a, c))cab 2 = (a')+cab 2 ~ O, 

and FG is not Lie centre-by-metabelian.  

So we may assume tha t  (a, C) C_ (y}. Then  z := (b, c) ~ (y) for some c E C, 

and az = zy 2. Furthermore,  

(FG)"  ~ [a + ba, b + %] = [(1 + y -1)a ,  (1 + z-1)b] 

= (t + y-1) (1  + y2z-1)ab+ (1 + z - l ) ( 1  + y)ba 

= ((1 + y - l ) ( 1  + y 2 z - 1 ) y  + (1 + 2 - 1 ) ( 1 + y ) )  ba 

= (1 + y) (1 + y2z-1 + 1 + z - I )  ba = (y}+z-lba. 

Since (ba, c) = b(a,c)(b,c) E (y} z, we have [c, (y}+z-lba] = (y}+z-l[c, ba] = 
z -1 (y)+(l+z)cba = (G')+cba ~ O. Therefore,  FG is not Lie centre-by-metabel ian 

in this case. 

CASE 4: (a,b) r ~(a ' ) .  By case 3, (a,b) E ft(G') \ O(G') = <x,y 2} \ (y2} = 

{x, xy2}. By renaming x if necessary, we may even assume tha t  (a, b) = x. 

Then  there  exists an element c C C such that  at least one of (a, c), (b, c) 

has order  4; by switching the roles of a and b, resp. y and xy as in case 3 if 

necessary, we may w.l.o.g, assume tha t  I((a,c))l = 4. Then  ((a,c)} = (y) or 

((a, c)} = (xy} (disappointingly there is no w.l.o.g.-ing anymore,  since we might  

have switched y and xy already); by replacing c by c -1 if necessary we may 

assume tha t  (a, c) �9 {y, xy}. 

Assume first t ha t  (a, c) = y. Note tha t  y �9 Z(F[(a ,  c}]). Then  

(FG)"  ~ [ca + C(ca), c + ac] = [(1 + y-1)ca, (1 + y)c] = (1 + y - l ) ( 1  4- y)[ca, c] 

= (1 + y-1) (1  4- y)(1 + y)c~a = (y)+c2a. 

Observe tha t  (b, c2a) = (b, c)2(b, a) �9 (y2) x, hence 

[b, (y)+c2a] = (y)+(1 + (b, c2a)) �9 c2ab = (y)+ (1 + x) c2ab = (G')+c2ab ~ O. 

Hence FG is not Lie centre-by-metabelian.  

Assume now tha t  (a, c) = xy. Note tha t  (1 + x)ba = (1 + x)ab. Then  

(FG)"  ~ [a 4- Ca, b 4. %] = [(1 4. xy-X)a, (1 4- x)b] 

= (1 + xy-1)[a, (1 + x)b] 

- -  (1 + xy -1) ((1 + xy2)ab + (1 +  )ba) 
= ( l + x y  -1) ( l + x y  2 + 1 +x)  ab 

= (1 + xy-1) (1  + y2)xab = (xy)+xab. 
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Now since (b, xab) = (b, x)(b, a) E (y2} x, we have 

[b, (xy)+ xab] = (xy)+(1 + (b, xab))xab 2 = (xy)+(1 + x)xab 2 = (G')+xab 2 ~ O. 

Therefore FG is not Lie centre-by-metabelian, and case 4 is finished. 

By the cases 1-4, we may assume tha t  (a, C) < G', (b, C) < G', and (a, b) E 

(I)(G'). Then G' = (a,C)(b,C), and consequently (a,C) ~ Z4 or (b,C) -~ Z4. 
W.l.o.g. (a, C) ~ Z4, i.e. (a, C) = (y) (case 5 below) or (a, C) = (xy) (case 6). 

CASE 5: (a ,C)  = (y). Then (a,.): C --+ (y) is an epimorphism, and U := 

( a , . ) - l ( ( y 2 ) )  < C. The map (b,.): C --+ G' is a homomorphism with image 

(b,C) ~_ (y}, so V := (b , . ) - l ( (y))  < C. Hence there is an element c E C \ 

(UU V) r 0. Then (a,c) E {y ,y-1}  and (b,c) E x(y).  By replacing c by c -1 if 

necessary, we may even assume tha t  (a, c) = y. 

If (b,c) has order 4, then (ba, c) = b(a,c)(b,c) = y-X(b,c) E (b,c)(y) = x(y)  
has order 2. If we choose D E {b, ba} such tha t  (9, c) has order 2, and if we set 

z := (b,c) = (c,b), then z E x ( y  ~) and (1 +z)bc  = ( l + z ) c b .  Note that  ~'y = y-1 

and (a, b) = (a, b) E (y:} for any choice of b. Then 

(FG)" 9 [c + ac, b + ~o] = [(1 + y)c, (1 + z)b] = (1 + z)[(1 + y)c, b] 

= (1 + z ) ( ( 1  + y)cb + (1 + y-1)bc) -- (1 + z) (1  + y  + 1  + y-I)cb 

= (1 + z)(1 + y )yc  = = (x ,  y2)+y 8. 

Now (x, y2 }+ is central in FG, since (x, y2} __ G. Moreover 

C a, ycb) = (a, c)(a, b) E y (y~). 

Hence 

[a, ( x, y2 } +ycD] = ( x, y2}+[a, ycb] -= ( x, y2}+(1 -t- ( a, ycb ) )ycba = ( G') +yc~)a ~ O. 

Therefore FG is not Lie centre-by-metabelian in this case. 

CASE 6: (a, C) -- (xy). Similarly as in case 5, we obtain an element c E C such 

tha t  (a, c) = xy and z := (b, c) ~ (xy). Then 

(FG)"  ~ [ca + a(ca), a + Ca] = [(1 + xy)ca, (1 + xy-1)a] 

= (1 + xy)(1 + xy)caa + (1 + xy-1)(1 + xy-1)aca 

=-: ('1 + y2)(ca + ac)a = (1 + y2)(1 + xy)ca 2 = (xy)+ ca 2. 

Now (b, ca 2) = (b,c)(b,a 2) = (b,c)(b,a) 2 = (b,c) = z, and so [b,(xy)+ca 2] = 
(xy}+(1 + (b, ca2))ca2b = (xy)+(1 + z)ca2b = (G')+ca2b ~ O. So FG is also not 

Lie centre-by-metabelian in this last case. I 
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LEMMA 2.11: Let the notation be as in 2.5, and assume that the image of 99 is 
(a2}. I f  C' ~ ~(G'), then FG is not Lie centre-by-metabelian. 

Proof" We may choose an element a E G with ~h = a2(h) -- h -1 for all h E G ~. 

Then G / C  = (aC) ~- Z2 and C' C Z(G) M G' -- (x, y2} ~_ V4. 
Since C' ~ ~(G r) = (y2 }, there are elements c, ~ E C such that [((c, 5)) I ~ (y2}. 

For the homomorphism (c, .): C ~ (x, y2}, this implies that U := (c, . ) - l ( (y2) )  

< C .  

Now G' = (a,C)C' implies that (a,C) ~ (x, y2}. Since the map (a, .): C --+ G' 

is a homomorphism, this shows that Y := (a, . ) - l ( (x ,  y2)) < C. 

Therefore we may choose an element d E C \ ( U U V )  ~ O. Then (e,d) E x (y2), 

and (a, d) E y {z, y2}; w.l.o.g. (c, d) -- x, (a, d) = y (rename x and y if necessary). 

We compute 

(FG)" s [d + Cd, a + da] ---- [(1 + x)d, (1 + y-1)a] = (1 + x)(1 + y-1)(da + ad) 

= (1 + x)(1 + y - l ) (1  + y-1)ad = (1 + x)(1 + y2)ad = (x, y2}+ad, 

and [d, (x, y2} +ad] = ( x, y2 } + [d, aid = ( x, y2 } + (1 + y)dad = ( G') +dad ~ O. This 

shows that  FG is not Lie centre-by-metabelian. I 

3. C o m m u t a t o r  s u b g r o u p s  o f  o r d e r  16 

We now want to establish Theorem 1 for all groups G with ]G'I ] 16. By the 

preceding two sections, it suffices to suppose that ]G' I = 16, and study the 

1 + 5 + 3 = 9 cases mentioned in the lower half of the table in 1.3. In particular, 

we may assume that  G' is isomorphic to Z4 • Z4, or Z2 • Zs, or V4 • Za- 

Remark 3.1: Suppose that  G is a counterexample to Theorem 1 with G' 

Z4 • Z4, and set C := CG(Gr). Then by 1.3, we only have to study one particular 

action of G on G'; this turns out to be element inversion. So ]G : C] = 2, and if 

we fix an element a E G \ C, then ~h = h -1 for all h E G'. 

Moreover, C' c_ G' M Z(G) -- r and thus G' -- (a,C)C' = (a,C). 
Consequently, (a, .): C --+ G t is an epimorphism. 

If C is abelian; then G satisfies condition (iv) of Theorem 1, so it is not a 

counterexample. Therefore Z(C) < C. Certainly U := (a , . ) - l (O(G' ) )  < C, so 

we may choose an element e E C \ (U U Z(C)) r O. 
We set x := (a,c) ~ O(G'). Then V := (a, .)- l((x,O(G')))  < C and W :-- 

Co(c) < C. Choose an element d E C \ (V U W) # 0. 
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If we set y := (a,d), then  G r =  (x,y), and (c,d) E (x2 ,y  2) \ {1}. Then  

(FG)"  ~ [d + ad, ca + a(ca)] = [(1 + y)d, (1 + x)ca] 

= (1 + x) ((1 + y)dca + (1 + y-1)(ca, d)dca) 

= (1 + x) ((1 + y) + (1 + y-1)(c, d)y) dca 

= (1 + x)(1 + y ) ( 1  + (c,d))dca =: 7. 

If (c,d) = x 2, then r = dc(1 + y)(x)+a, and hence [y,T] = tic(1 + y)(x)+[y,a] = 
dc(1 + y) (x)+(1  + y2)ya = dc(G')+ a ~ 0, contradiction.  

Consequent ly  ?)2 := (c,d) e {y2,x2y2}. Then  T = dc(1 + x)(1 + y)(1 + ?)2)a, 

and [x, T] = dc(1 + x)(1 + y)(1 + ?)2)Ix, a] = dc(1 + x)(1 + y)(1 + ?)2)(1 + x2)xa = 

dc(G') + a r O, contradict ion.  

R e m a r k  3.2: Suppose now tha t  G is a counterexample  to Theo rem 1 with G r = 

(x,y) ~ Z2 x Zs, where x s = 1 = y2. Then  FG is Lie cent re-by-metabel ian ,  and 

all subgroups  of index 2 in G are nonabelian.  

Set C := Cc(G'), and m a p  G/C to Au t (G ' )  = Z2 x Ds in the usual way. The  

reduct ions of the a lgor i thm described in 1.3 give the following possible images of 

G/C in Au t (G ' ) :  

(o~9, o~,) ~ (o~Z, ~) ,  
(o~, /3, '),) ~ Z2 x Z2 x Z~, 
( ~ ,  ~ / ~ ) ,  (~, 7) ~ (~, ~ )  ~ z2 x z2, 
(~'Y) ~ (~9"y) -~ z~, 

where a:  x ~-+ x 3, y ~-+ y, ~: x ~-~ x 5, y ~-~ y, "~: x ~ x, y ~ yx 4. 

Note tha t  ( a % G ' )  = ( ( a , ~ , 7  } ,G ' )  = @2) = ~ (G ' ) .  So in any case we have 

(G, G ' )  = @(G'),  i.e. G/@(G') has class 2. So for all e lements  g, h E G, we obta in  

(g, h)' ~(G')/C~(G') = ((g,h)) ~(G') /~(G') .  Hence <g,h)' C_ ((g,h)) ~(G ' ) ;  in 

part icular :  

(*). Vg, h e G: I((g,h)}l = 8 ===a (g,h)' = ((g,h)} 

ASSUMPTION: IG : C] :> 4. 

Let  a,b e G such tha t  I((a,b))] = 8. By renaming  x and y if necessary, we 

m a y  assume tha t  (a, b) = x (note however tha t  this "fixes" the image of G / C  in 

A u t ( G  t) in the  sense tha t  we may  not replace it by a conjugate  subgroup) .  

Set H := Ca, b), then  H '  -- ix} by (*). The  results of section 2 together  with 

l e m m a  0.2 imply  t ha t  H acts  by element inversion on H ' ,  i.e. ]H : CH(X)I = 2, 

and t ha t  CH(X ) is abelian. W.l.o.g. H/CH(X) = (aCH(X)). Then  bx = x or 

bX = %. In the la t ter  case, ba E CH(X). Since (a,b) = (a, ba), we may  replace b 

by ba, and thus assume tha t  b E Cg(x). 
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Now IG:CI > 4 implies that there is an element g E G such that 4 = 

I(aC, gC) l. If bC e (aC), then (he, de} = (aC, gbC), and either (a,g) or 

(a, bg) = (a,b)b(a,g) = x(a,9) has order 8, w.t.o.g. I((a,g)}l = 8. So after re- 

placing b by g if necessary and working through the preceding paragraphs again, 

we may assume that I(aC, bC)l = 4, (a,b) = x, % = x -1, and bx = x. Hence 

(p(aC) E { ~ ,  a/3-~}, and ~(bC) = % 
Set K := (a, b, y). Note that (G, y) = (x4), so K'  = H' = (x}. As above, CK(X) 

must be abelian. But b, y C CK(X), and (b, y) = (% y) = x 4 r 1, contradiction. 

This shows that IG : C[ = 2. 

Then G / C  is mapped onto (a@ or (a/37). Now Ca,(a')') = Ca,(a~"/) = (yx2), 
i.e. C' C_ Z(G) A G' = (yx 2) ~ Z4. If C' = 1, then C is an abelian subgroup of 

index 2 in G, and G is not a counterexample. If Ic'I = 2, then FG is not Lie 

centre-by-metabelian by lemma 1.2, so G is also not a counterexample. Hence 

C ' =  (yx2). 

Set N := (x 4} = ~(O(G'))  ~ G, and H := H N / N  for all H < G, and 9 := g Y  

for all g E G. Then G' ~ Z2 x Z4, and (292) = C' c_ CV(G')'; in particular, 

CO(e')' ~= (22) = ~5(G'). But then G is a counterexample to Theorem 1 with 

IGll = 8, in contradiction to the results of section 2. 

Remark 3.3: Let G be a group with G' = (x, y, z) -~ V4 x Z4, where x 2 = y2 = 

z 4 = 1. As usual, set C := Ca(G') and map G / C  to Aut(G').  By 1.3, G may 

only be a counterexample to Theorem 1, if the image of G / C  is (conjugate to) 

one of the following elementary abelian 2-groups: 

where ~: z ~-~ z 3, x, y f ixed, ~: x ~ xz  2, y, z f ixed, '7: Y ~-~ Y z2, x,  z f ixed. ( In 

fact, (ct) and (a, ~, 3') are normal in Aut(G'),  while (~, @ is not.) 

We will study those cases in 3 separate lemmata. 

LEMMA 3.4: Given the notation of 3.3, suppose that ]G : C I = 2, and that FG 

is Lie centre-by-metabelian. Then G contains an abelian subgroup of index 2. 

Proof: By 3.3, G / C  is mapped onto (a}. 

Then C' C Z(G) MG' = (x ,y ,  z2). Set g := (x} ~ G. Then G ' / N  ~- 

Z2 x Z4. Since FIG~N] is Lie centre-by-metabelian, section 2 implies that  C ' / N  C_ 
Cc/N(G' /N) '  c_ ~ (G ' /N )  = (z2Y).  Therefore C' C_ (x, z2). Similarly C' C_ 

(y, z2), so together we have C' C_ (x ,z  2) ['1 (y ,z  2) = (z 2) -~ Z2. 

Now Lemma 1.2 implies that [C'[ 7 ~ 2. Hence C t = 1, and C is abelian. | 
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LEMMA 3.5: Given the notation of 3.3, suppose that ]G : C[ = 4. Then FG is 

not Lie centre-by-metabelian. 

Proof." By 3.3, we may  assume tha t  G/C is m a p p e d  onto (j3,-y/. T h e n  C '  C_ 

Z(G) N G' = (z I. We write GIG = (aC, be) where ah = "y(a), bh = fl(h) for all 

h E G ' .  Then  aX = X, Oy = yz 2, a z = z, and bX = XZ 2, by=y ,  b z __ z. 

Set H := (b,C). Then  H '  -- (b,C)C' and C C_ CH(H'). 

CASE 1: H '  = G ' .  T h e n  H does not act  by element  inversion on H ' ,  hence C 

cannot  be  abel ian by L e m m a  0.2, so by L e m m a  3.4, F H  is not Lie centre-by- 

metabel ian .  

CASE 2: H '  ---- Z2 • Z2 x Z2. Then  H '  = (x,y,  z2}, hence b C H \ C H ( H ' ) ,  and 

so c l (H)  > 2. By section 2, F H  is not Lie cent re-by-metabel ian .  

CASE 3: H '  -~Z2 •  

If  H does not act  by element inversion on H', or if C ~ ~ (I)(H'), then  F H  is 

not  Lie cen t re -by-metabe l ian  by L e m m a  0.2 and section 2. 

So we m a y  assume tha t  bh = h -1 for all h E H', and tha t  C' C (z2}. I t  is easy 

to check tha t  {h E G': bh = h -1}  = (y, xz). Therefore  (y, xz) = H' = (b,C)C' = 

(b, C),  i.e. (b, .): C --+ H '  is an epimorphism.  

Now if (a,b) ~ H', then (a,b) C xH'.  Note tha t  (ca, b) = (c,b)(a,b) for all 

c E C, so by replacing a by a suitable element of Ca if necessary, we may  assume 

tha t  (a, b) = x = (b, a). Let  c e C such tha t  (b, c) = y = (c, b). Then  

(FG)"  ~ [ a +  ba, b+ %] ---- [(1 + x )a , (1  +y )b ]  

= (i + x)(l + yz2)ab+ (i + y)(l + xz2)ba 
= (1 + x)(1 + yz2)xba + (1 + y)(1 + xz2)ba 

= ( x + y z  2 + y + x z  2) ba 

= (x + y)(1 + z2)ba = x(xy,  z2)+ba, 

and 
[a,x(xy, z2}+ba] = x(xy,  z2}+[a,b]a = x(xy,  z2} + (1 -t- x)ba 2 

= (x,y ,  z2}+ba 2 ~ 0, 

i.e. F H  is not  Lie cent re-by-metabel ian .  

Hence we may  assume t h a t  (a, b) E H '  = (b, C). As above, we m a y  replace a 

by a sui table  element  of Ca and assume tha t  (a, b) = 1. 

Then  G '  = ((a, b ) ) ( a , C ) ( b , C ) C '  = (a,C)H'.  Since G' ~= H', we have ( a , C )  

H'. Then  (a, .) :  C ~ G '  is a h o m o m o r p h i s m  with U := (a , . ) - l (H  ') < C. 
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Similarly, (b,.): C -+ H '  is an epimorphism, i.e. V := (b, .)-l((y,  z2)) < C. Let 

c E C "-. (U U V) r 0, then (b, c) E H '  has order 4, and (a, c) ~ H' .  

Then z 2 e ((a, c), (b, c)) ~ Z2 x Z4. Since G/(z  2) has class 2, also (a, b, c ) / ( z  2 ) 
has class 2. Then 

(a, b, c)' / ( z  2) = ((a, b), (a, c), (b, c)} / ( z  2) = ((a, c), (b, c)) / ( z2) .  

Therefore (a, b, c)' = ((a, c), (b, c)), in particular (a, b, c}' ~ Z2 x Z4. Now b does 

neither act trivially on (a, b, c)', since b(b, c) = (b, c) -1 , nor by element inversion, 

since (a,c) ~ H' = {h E G': bh = h - l} .  By section 2, 1F{a,b,c) is not Lie 

centre-by-metabelian. 

By the cases 1-3, we may assume that  IH'I _< 4. Purthermore z 2 = (b,x) E 
(b, C) c (b, C)C' = H'. 

For K := (a, C), we argue similarly as in the cases above to show tha t  [K'[ > 8 
implies tha t  FG is not Lie centre-by-metabelian. So we may assume tha t  [K' I _< 4. 

Note tha t  z 2 = (a, y) C (a, C)C' = K'. 
Then [H'K'[ _< 8. Now G' = ((a, b)) (a, C)(b, C)C' = ((a, b)) H'K' .  For order 

reasons, Z2 x Z2 x Z2 -~ G'/(z  2) - -  ((a,b),z 2 ) / ( z  2) x H ' / ( z  2 ) x K ' / (z2) .  Hence 

C '  c H ' N  g '  = (z2). Then H '  = (b,C), K'  -= (a,C), and IK'I = IH'I = 4. 

Suppose tha t  (b, C) ~ Z4. As usual, we find an element c E C such tha t  w := 

(b,c) has order 4, and (a,c) ~ (w). Note that  1 = (b-lb, c) = b-~(b,c)(b-l,c) = 
bw(b-1, c). Hence (b- l ,c )  C {w - I ,  bw-X} C_ {w• Since (b-l ,c  -1) = (b- l ,c )  -1, 

there is an element d E {c,c -1} such tha t  (b-l,d) = w. Then also (cb-l,d) = w, 
and thus 

(FG)" ~ [b + C-lb, cb -1 + d-~(cb-1)] = [(1 + w)b, (1 + w)cb -1] 

= (1 + w)(1 + bw)bcb-1 + (1 + w)(1 + ~w)c = (1 + w)(1 + bw)(c + bc) 

= ( 1 + w ) ( 1 +  % ) ( l + w ) c =  (1 +w2)(1  + w  • = (w>+c, 

and [a, (w)+c] = (w)+(1 + (a, c))ca # 0, so FG is not Lie centre-by-metabelian. 

So we may assume tha t  H' = (b, C) ~- Va, and similarly K' = (a, C) -~ I/'4. 
Then (a,b) • ( x , y , z  2) = H'K' .  As usual, we find elements c,d e C such 

tha t  (b,d) = z 2, and t := (b,c) e H' \ (z2), and s := (a,c) e K'  \ (z2). 
Then ( s , t , z  2) = H 'K '  = (x,y,  z2). Note that  b commutes with s modulo 

(z 2) c_ z ( c ) ,  so 

(FG)" ~ [b + db, c + ac] = [(1 § z2)b, (1 + s)c] = (1 + z2)(1 + s)[b, c] 

= (1 + z2)(1 + s)(1 + t)cb = (z 2, s, t)+cb = (x, y, z2>+cb. 
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Since a and c commute modulo (x, y, z2), we furthermore have 

[~, ( ~ , y , z ~ ) % b l  = (~,y ,z~)§ = 4 ~ , ~ , z ~ )  § 

= c(x,y,  z2)+(1 + (a,b))ba = c(V')+ba r O. 

Hence FG is not Lie centre-by-metabelian. I 
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LEMMA 3.6: Given the notation of 3.3, suppose that [G : CI = 8. Then FG is 
not Lie centre-by-metabelian. 

Proof: By 3.3, G / C  is mapped onto (a,/3, 7) = (/3, % at3V}. Choose elements 

g, h, k e G such that  9v =/3(v), hv = y(v), kv = a ~ ( v )  for all v E G'. Then 

9 x = x z  2, a y = y ,  g z = z ,  
h x = z ,  hy = yz2, hZ=Z,  
k x = x z  2, a y = y z  2, k z = z  3. 

It is easy to check that 

(,) 
cG,(9) = (y, z) ,  
ca,  (h) = (x, z ) ,  
CG,(k) = (~y, xz) ,  

{v C G': 9v = v - I }  = (y, xz> , 
{~ e c ' :  ~ = ~ - 1 }  = <~,yz>, 
{~ e c ' :  % = v -1 }  = <xy, z>. 

Set H := (g, h, C). Then H '  = ((g, h)) (g, C)(h, C ) C .  If H '  = G', then FH is not 

Lie centre-by-metabelian by Lemma 3.5. Hence we may assume that  IH r] <_ 8. 

Then H is not a counterexample to Theorem 1. If H r ~- Z2 • Z2 • Z2, then 

H' = (x ,y ,  z2). But since H does not act trivially on (x ,y ,  z2), the group 

algebra FH is not Lie centre-by-metabelian. Suppose next that H '  ~ Z2 • Z4. If 

FH was Lie centre-by-metabelian, then by section 2, (g, h) would have to act by 

element inversion on H' ,  which is impossible by (*). Hence we may assume that  
IH'L <__ 4. 

If we set K := (g, k, C) and L := (h, k, C), we similarly may assume that  

K '  = ((g, k)) (g, C)(k, C)C' and IK'] < 4, 

L' = ((h, k)} (h, C)(k, C)C' and [n'] < 4. 

Note that  z 2 e (g, G') N (h, G') M (k, G') C (g, C) M (h, C) M (k, C) C H'  M L' M K' .  

Moreover, since G' = ((g, h), (g, k), (h, k)> (g, C)(h, C)(k, C)C' ,  we have G' = 
H ' K ' U .  For order reasons, 

z~ • z2 • z2 ~- V'l(z~> = U'l(z  2) • g ' l ( z  2) • n'l(z~> " 
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In part icular ,  

Therefore  G'  = ((g, h), (g, k), (h, 

has order  4, and let t E {g, h, k} 

(g, C)C' C H' A K'  : (z2> : O(G'), 

(h ,C)C'  C_ H ' n L ' = ( z 2 > ,  

(k ,C)C'  C_ g '  A L' : (z2}.  

k)>. Choose r, s e {g, h, k} such tha t  w := (r, s) 

\ {r, s}. Then  w 2 = z 2, and 

(**) G ' =  <(r,s) ,(r , t) ,(s , t)} ,  (r,s) = w with ](w>] = 4. 

Note tha t  (r, w), (s, w) E (G, G') = (w2>. 

Assume first tha t  (r, w) = 1 = (s, w), then 

(Fc ) "  ~ [~ + ~ , s  + "~1 = [(1 + ~ ) ~ , ( 1  +~)~]  = (1 + ~3)( t  + ~)[~,~l 

= (1 + w3)(1 + w)(1 + w)sr = (w>+sr. 

Now (w> <3 C, i.e. (w) + C Z(FG) .  Moreover (st, t) r (w). Hence [t, (w)+sr] = 
(w)+[t, sr] = (w)+(1 + (t, sr))srt  # O. Therefore,  FG is not Lie centre-by- 

metabel ian  in this case. 

So we may w.l.o.g, assume that  (r, w) = w 2 = z 2. By possibly replacing s 

by st,  we even may assume tha t  (s, w) = w 2 (since (r, sr) = (r, s) and (sr, t) = 
S(r,t)(s,t) C (w2, ( r , t ) ) ( s , t )C_  ((r ,s ) , (r , t ) ) (s , t ) ,  this does not change (**)). 

Then  

(vc )"  ~ [r + st, s + rs] = [(1 + w3)r, (1 + w)s] 

= (1 + ~3)(1 + ~3)Ts + (1 + ~)(1 + ~)~T 

= (I + w~)(r~ + ~) = (i + ~)(1 + ~)~r = <~>%~. 

As before, [t, <w>+sr] = (w>+(1 + (t, sr))srt  # O. Hence FG is also not Lie centre- 

by-metabel ian in this case. | 

4. Finish 

Let  us collect all instances in which we already know tha t  Theorem 1 holds: 

In [9], we verified it for nilpotent  groups of class at most 2, and for groups G 

with exp(G' )  <_ 2. The  preceding sections 2 and 3 then established it for groups 

G with ]G'] ] 16. We are now prepared to finally prove it for a rb i t rary  groups. 

LEMMA 4.1: Let FG be a Lie centre-by-metabelian group algebra. I f  G ~ is a 
finite 2-group of order at least 16, then G has an abelian subgroup of index 2. 
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Proof: We argue by induction on IG~I . By the results of section 3, we may 

assume that  ]G' I > 32. By [9], we may also assume that exp(G') ~ 2. Hence 

�9 (c ' )  1. 
It now suffices to show that G ~ n Z(G) ~ 1, because then we may factor out 

an involution in G ~ M Z(G), and obtain the result from Lemma 1.2. 

Set C := Cc(G~). Note that G/C is finite, since G r is finite. 

If G /C  is a 2-group, then G' x G/C is also a (finite) 2-group, and (G')4 1) n 

Z(G' >4 G/C) ~ 1, i.e. G' n Z(G) r 1. 
So suppose that  G/C is not a 2-group. Then by 1.1, G/C has a Hall 2 t- 

subgroup which centralizes r Therefore G/CG(~(G~)) is a finite 2-group, 

and similarly as above, we find that 1 r (I)(G') N Z(G) C_ G' N Z(G). I 

Remark 4.2: The preceding lemma shows that if there is a counterexample G 

to theorem 1, then G ~ is not a finite 2-group. Then by [7], G contains a subgroup 

A of index 2 such that A ~ is a finite 2-group. We set 

Pg(G) := {A <_ G: IG : A l = 2 and A' is a finite 2-group} r 0, 

a(G) := min {IA'I : A E !2t(G)} E N, 

and we have to show that if FG is Lie centre-by-metabelian, then a(G) = 1. But 

before we do so in 4.4, let us quickly insert another lemma: 

LEMMA 4.3: Let G be a group with a normal subgroup U that is isomorphic 

to V4. Set C := Co(U), and let ~: G/C --~ Aut(U) ~ $3 be the usual mono- 
morphism. If ~ is surjective, then FG is not Lie centre-by-metabelian. 

Proof: We write (x, y) = U -~ V4. If qo is surjective, then there are elements 

g, h E G w i t h  9 x = y ,  a y = x ,  h x = y ,  ~ y = x y .  Set a := (g, h), then a x = y a n d  

Oy = xy; in particular, a E G \ U. Then 

p :=[x § ~x, h § gh] = Ix § y, h § (g, h)h] =- (x § y)(h § ah) § (h § ah)(x § y) 

=(x  + y)h + (x + y)ah + (y + xy)h + (xy + x)ah = (x + ya + xy + xya)h, 

and 

[x,p] =Ix, (x + xy)h] + [x, (y + xy)ah] ~- (x + xy)[x,h] + (y + xy)[x, ah] 

=(x + xy)(1 + (h,x))xh + (y + xy)(1 + (ah, x))xah 

= ((x + xy)(1 + xy)x + (y + xy)(1 + y)xa) h = (U + + g+a) h r O. I 
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LEMMA 4.4: Let G be a group. Suppose that G ~ is not a finite 2-group, and that 
a(G) >_ 2. Then FG is not Lie centre-by-metabelian. 

Proo~ We argue by induction on a(G), which clearly is a power of 2. If a(G) = 2, 
then FG is not Lie centre-by-metabelian by 1.2. 

So we may assume that  a(G) _> 4. Let A E P.t(G) such that  [A' I = a(G). Note 

that  A itself is not a counterexample to Theorem 1 by 4.1. 

Assume there is a normal subgroup N of G with 1 < N < A t . Then also 

(G/N)' = G' /N is not a finite 2-group. Let B / N  E 92(G/N) with [(B/N)'[ = 

a(G/N). Since then B E ~I(G) and A / N  E ~(G/N),  we have a(G)/[g[ < 

[B'N[ ~IN[ = I(B/N)'[ = a(G/N) <_ [A':  N[ = a(G)/[g[; in particular 1 < 

a(G/N) < a(G). By induction, F[G/N] is not Lie centre-by-metabelian, and we 

are done. 

So we may assume that  A ~ is a minimal normal (2-)subgroup of G. Then 

r = 1, so A ~ is elementary abelian. 

If [A'[ > 8, then A C_ CG(A') by Lemma 0.2 (since A is not a counterexample 

to Theorem 1). In this case, A' may be regarded as an F2 [G/A]-module. Let N 

be a simple submodule of A'. Then N -~ Z2, since G/A ~- Z2. But then N ~ G 

and N < A ~ in contradiction to the minimality of A ~. 

Consequently [A'[ _< 4, in fact [A'[ = 4, i.e. A' ~- V4. 
The action of G on A' gives a monomorphism qo: G/Cc(A') --+ Aut(A')  ~ $3. 

By 4.3, we may assume that  9~ is not surjective. If [G : CG(A')[ <_ 2, we again find 

a (trivial) simple submodule N of the F2 [G/Cc(A')]-module A' in contradiction 

to the minimality of A'. Therefore [G: Cc(A')[ = 3. 

Then G ~ _C A M C6(A') =: B, so G/B is abelian, i.e. G/B  ~- Z6. We write 

G = (g, B). Then g6 E B, g3 E CG(A'), g2 E A. We also may write A' = (x, y) 

with gx = y and gy = xy. Then 

(FG)" 3 [g+ ~g,z + gx] = [(l + xy)g,x + y] = (l + xy)(x + y + y +  xy)g = (A')+g. 

Clearly 

A with 

I 

G = (g,A}, and so G '  = (g,A)A'. Since G'  > A', there is an element a E 

(g,a) • A'. But then [a, (A')+g] = (A')+[a,g] = (A')+(1 + (g,a))ag ~ O. 
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